

moban - 模板 Yet another jinja2 cli command for static text generation

[image: _images/moban.svg]
 [http://travis-ci.org/moremoban/moban][image: _images/badge.svg]
 [https://codecov.io/gh/moremoban/moban][image: _images/c1fee4225e6ab5ceaf9421333fb514c235a88327.svg]
 [http://moban.readthedocs.org/en/latest/][image: _images/gitter.svg]
 [https://gitter.im/chfw_moban/Lobby]
	Author

	C.W.

	Issues

	http://github.com/moremoban/moban/issues

	License

	MIT

	Version

	0.2.4

	Generated

	Jan 14, 2019

moban brings the high performance template engine (JINJA2) for web into
static text generation. It is used in pyexcel project to keep documentation
consistent across the documentations of individual libraries.

Installation

You can install it via pip:

$ pip install moban

or clone it and install it:

$ git clone http://github.com/moremoban/moban.git
$ cd moban
$ python setup.py install

Quick start

Here is a simple example:

$ moban -c data.yml -t my.template
$ cat moban.output

Given data.yml as:

hello: world

and my.template as:

{{hello}}

moban.output will contain:

world

the tutorial [http://moban.readthedocs.org/en/latest/#tutorial] has more use cases.

Usage

usage: moban [-h] [-cd CONFIGURATION_DIR] [-c CONFIGURATION]
 [-td [TEMPLATE_DIR [TEMPLATE_DIR ...]]] [-t TEMPLATE] [-o OUTPUT]
 [-f] [-m MOBANFILE]

Yet another jinja2 cli command for static text generation

optional arguments:
 -h, --help show this help message and exit
 -cd CONFIGURATION_DIR, --configuration_dir CONFIGURATION_DIR
 the directory for configuration file lookup
 -c CONFIGURATION, --configuration CONFIGURATION
 the dictionary file
 -td [TEMPLATE_DIR [TEMPLATE_DIR ...]], --template_dir [TEMPLATE_DIR [TEMPLATE_DIR ...]]
 the directories for template file lookup
 -t TEMPLATE, --template TEMPLATE
 the template file
 -o OUTPUT, --output OUTPUT
 the output file
 --template_type TEMPLATE_TYPE
 the template type, default is jinja2
 -f force moban to template all files despite of
 .moban.hashes
 -m MOBANFILE, --mobanfile MOBANFILE
 custom moban file

exit codes

	0 : no changes

	1 : has changes

	2 : error occured

Built-in Filters

split_length

It breaks down the given string into a fixed length paragraph. Here is the syntax:

{% for line in your_string | split_length(your_line_with) %}
{{line}}
{% endfor %}

It is used to keep changelog formatted in
CHANGELOG.rst.jjs in pypi-mobans project [https://github.com/moremoban/pypi-mobans/blob/master/templates/CHANGELOG.rst.jj2#L15]

github_expand

It expands simple hashtags into github issues. Here is the syntax:

{{ your_github_string | github_expand }}

It makes it easy to mention github reference in change log in all projects. Here is
the place it is applied:
CHANGELOG.rst.jjs in pypi-mobans project [https://github.com/moremoban/pypi-mobans/blob/master/templates/CHANGELOG.rst.jj2#L15]

Here is Grammar in the changelog.yml:

=============== ==============================
Syntax Meaning
=============== ==============================
`#1` moban issues 1
`PR#1` moban pull request 1
`pyexcel#1` other project issues 1
`pyexcel#PR#1` other project pulll request 1
=============== ==============================

More details can be found in moban’s changelog.yml [https://github.com/moremoban/moban/blob/master/.moban.cd/changelog.yml#L10]

repr

Returns a single quoted string in the templated file

Built-in Tests

exists

Test if a file exists or not

Tutorial

Please clone the moban repository as the data mentioned in the tutorial are stored in
examples folder.

	Level 1 Jinja2 on command line

	Level 2: template inheritance

	Level 3: data override

	Level 4: single command

	Level 5: custom configuration

	Level 6: Complex Configuration

	Level 7: Custom jinja filters, tests and globals

In pratice, the following use cases were found interesting to go along with.

	Misc 1: copying templates

For more complex use case, please look at its usage in pyexcel project [http://pyexcel.readthedocs.io/en/latest/guide.html]

Developer Guide

	Development guide
	Jinja2 extensions for Moban
	Jinja2 Filter

	Jinja2 Test

	Jinja2 Globals

	Template engine extension for Moban

Change log

0.2.4 - 14-07-2018

Added

	#32 [https://github.com/moremoban/moban/issues/32]: option 1 copy a
directory without its subdirectories.

	#30 [https://github.com/moremoban/moban/issues/30]: command line template
option is ignore when a moban file is present

0.2.3 - 10-07-2018

Added

	#76 [https://github.com/moremoban/moban/issues/76]: running moban as a
module from python command

	#32 [https://github.com/moremoban/moban/issues/32]: copy a directory
recusively

	#33 [https://github.com/moremoban/moban/issues/33]: template all files in
a directory

0.2.2 - 16-06-2018

Added

	#31 [https://github.com/moremoban/moban/issues/31]: create directory if
missing during copying

Updated

	#28 [https://github.com/moremoban/moban/issues/28]: if a template has been
copied once before, it is skipped in the next moban call

0.2.1 - 13-06-2018

Updated

	templates using the same template engine will be templated as a group

	update lml dependency to 0.0.3

0.2.0 - 11-06-2018

Added

	#18 [https://github.com/moremoban/moban/issues/18]: file exists test

	#23 [https://github.com/moremoban/moban/issues/23]: custom jinja plugins

	#26 [https://github.com/moremoban/moban/issues/26]: repr filter

	#47 [https://github.com/moremoban/moban/issues/47]: allow the expansion of
template engine

	#58 [https://github.com/moremoban/moban/issues/58]: allow template type
per template

Updated

	#34 [https://github.com/moremoban/moban/issues/34]: fix plural message if
single file is processed

0.1.4 - 29-May-2018

Updated

	#21 [https://github.com/moremoban/moban/issues/21]: targets become
optional

	#19 [https://github.com/moremoban/moban/issues/19]: transfer symlink’s
target file’s file permission under unix/linux systems

	#16 [https://github.com/moremoban/moban/issues/16]: introduce copy key
word in mobanfile

0.1.3 - 12-Mar-2018

Updated

	handle unicode on python 2

0.1.2 - 10-Jan-2018

Added

	#13 [https://github.com/moremoban/moban/issues/13]: strip off new lines in
the templated file

0.1.1 - 08-Jan-2018

Added

	the ability to present a long text as multi-line paragraph with a custom
upper limit

	speical filter expand github references: pull request and issues

	#15 [https://github.com/moremoban/moban/issues/15]: fix templating syntax
to enable python 2.6

0.1.0 - 19-Dec-2017

Added

	#14 [https://github.com/moremoban/moban/issues/14], provide shell exit
code

0.0.9 - 24-Nov-2017

Added

	#11 [https://github.com/moremoban/moban/issues/11], recognize .moban.yaml
as well as .moban.yml.

	#9 [https://github.com/moremoban/moban/issues/9], preserve file
permissions of the source template.

	-m option is added to allow you to specify a custom moban file. kinda
related to issue 11.

Updated

	use explicit version name: moban_file_spec_version so that version can be
used by users. #10 [https://github.com/moremoban/moban/issues/10] Please
note: moban_file_spec_version is reserved for future file spec upgrade. For
now, all files are assumed to be ‘1.0’. When there comes a new version i.e.
2.0, new moban file based on 2.0 will have to include
‘moban_file_spec_version: 2.0’

0.0.8 - 18-Nov-2017

Added

	#8 [https://github.com/moremoban/moban/issues/8], verify the existence of
custom template and configuration directories. default .moban.td, .moban.cd
are ignored if they do not exist.

Updated

	Colorize error messages and processing messages. crayons become a dependency.

0.0.7 - 19-Jul-2017

Added

	Bring the visibility of environment variable into jinja2 templating process:
#7 [https://github.com/moremoban/moban/issues/7]

0.0.6 - 16-Jun-2017

Added

	added ‘-f’ flag to force moban to template all files despite of .moban.hashes

Updated

	moban will not template target file in the situation where the changes
occured in target file than in the source: the template file + the data
configuration after moban has been applied. This new release will remove the
change during mobanization process.

0.0.5 - 17-Mar-2017

Added

	Create a default hash store when processing a moban file. It will save
unnecessary file write to the disc if the rendered content is not changed.

	Added summary reports

0.0.4 - 11-May-2016

Updated

	Bug fix #5 [https://github.com/moremoban/moban/issues/5], should detect
duplicated targets in .moban.yml file.

0.0.3 - 09-May-2016

Updated

	Bug fix #4 [https://github.com/moremoban/moban/issues/4], keep trailing
new lines

0.0.2 - 27-Apr-2016

Updated

	Bug fix #1 [https://github.com/moremoban/moban/issues/1], failed to save
utf-8 characters

0.0.1 - 23-Mar-2016

Added

	Initial release

Indices and tables

	Index

	Module Index

	Search Page

Level 1 Jinja2 on command line

moban reads data in yaml format, renders a template file in jinja2 format and
outputs it to moban.output. By default, it looks for data.yml as its data file

Evaluation

Please clone the moban project and install moban:

	$ git clone https://github.com/chfw/moban.git

	$ cd moban
$ python setup.py install

Then go to docs/level-1-jinja2-cli. here are different commands to evaluate it:

moban -c data.yml -t a.template

‘moban.output’ is the generated file.

moban -c data.yml -t a.template -o my.output

-o my.output will override the default name

Note

You may simply type the short form:

moban -t a.template

because moban looks for data.yml by default

Level 2: template inheritance

Template inheritance is a feature in Jinja2. This example show how it was done.
a.template inherits base.jj2, which is located in .moban.td, the default
template directory.

Evaluation

Please go to docs/level-2-template-inheritance, here is the command to launch it:

moban -c data.yaml -t a.template

a.template inherits .moban.td/base.jj2.

Level 3: data override

What moban bring on the table is data inheritance by introducing overrides key word in the yaml file:

overrides: data.base.yaml
....

And .moban.cd is the default directory where the base data file can be placed.

Evaluation

Please change directory to docs/level-3-data-override directory.

In this example, data.yaml overrides .moban.cd/data.base.yaml, here is the
command to launch it:

moban -c data.yaml -t a.template

‘a.output’ is the generated file:

========header============

world

shijie

========footer============

Level 4: single command

If you use moban regularly and operates over a number of files, you may consider
write a .moban.yml, which is a mini script file that commands moban to
iterate through a number of files

Evaluation

Please go to docs/level-4-single-command directory.

Here is the .moban.yml, whihc replaces the command in level 3:

targets:
 - a.output: a.template

where targets should lead an array of dictionaries.

Here is how to launch it
.. code-block:: bash

moban

‘a.output’ is the generated file:

========header============

world

shijie

========footer============

Level 5: custom configuration

With .moban.yml, you can even change default data directory .moban.cd and
default template directory .moan.td. Read this example:

configuration:
 configuration_dir: 'custom-config'
 template_dir:
 - custom-templates
 - cool-templates
 - '.'
targets:
 - a.output: a.template

where configuration lead a dictionary of key words:

	configuration_dir - the new configuration directory

	template_dir - an array of template directories

Evaluation

Please go to docs/level-5-custom-configuration directory.

Here is the command to launch it:

moban

‘a.output’ is the generated file:

========header============

world

shijie

this demonstrations jinja2's include statement

========footer============

Level 6: Complex Configuration

On top of level 5, you could have a common template, where data and output change.
In the following example:

configuration:
 configuration_dir: 'custom-config'
 template_dir:
 - custom-templates
 - cool-templates
 - '.'
 template: a.template
targets:
 - output: a.output
 configuration: data.yml
 - output: a.output2
 configuration: data2.yml

where template under confiugration needs a template file, which will be a
default template across targets. And in this example, the expand form of
targets is illustrated:

	{

	“output”: ‘an output file’,
“configuration”: ‘data file’,
“template”: “the template file”

}

Evaluation

Please go to docs/level-6-complex-configuration directory.

Here is the command to launch it:

moban

‘a.output’ is the generated file:

========header============

world

shijie

this demonstrations jinja2's include statement

========footer============

a.output2 is:

========header============

world2

shijie

this demonstrations jinja2's include statement

========footer============

Level 7: Custom jinja filters, tests and globals

Level 7 example demonstrates advanced plugin capabilities of moban. The following
moban file had plugin_dir specified:

configuration:
 template_dir:
 - my-templates
 plugin_dir:
 - custom-jj2-plugin
 configuration: data.yml
targets:
 - filter.output: filter.jj2
 - test.output: test.jj2

Where custom-jj2-plugin is a directory holding all jinja2 filters, tests
and globals. Under it, there are 4 files:

__init__.py filter.py test.py global.py

It is very important to have __init__.py, otherwise, it will NOT work. Other three
files are named to show case the feature. You can choose whichever name you prefer,
as long as you and your team could make sense of the names.

Evaluation

Please go to docs/level-7-use-custom-jinja2-filter-test-n-global directory,

Here is the command to launch it:

$ moban
Templating filter.jj2 to filter.output
Templating test.jj2 to test.output
Templating global.jj2 to global.output
Templated 3 files.
Everything is up to date!

Please examine individual template and its associated plugin for more details.

Misc 1: copying templates

With .moban.yml, you can copy templates to your destination.

Please be aware that, your templates and template folder have to be inside
declared template folders. It does not copy any file or folder.

Here is example moban file for copying:

configuration:
 template_dir:
 - template-sources
copy:
 - simple.file.copy: file-in-template-sources-folder.txt
 - "misc-1-copying/can-create-folder/if-not-exists.txt": file-in-template-sources-folder.txt
 - "test-dir": dir-for-copying
 - "test-recursive-dir": dir-for-recusive-copying/**

template copy does:

	copies any template inside pre-declared template directory to anywhere. moban will

create directory if needed.

	copies any directory to anywhere. If “**” is followed, moban attempts to do
recursive copying.

Development guide

Jinja2 extensions for Moban

Since version 0.2, mobanfile supports an extra field plugin_dir, along with
template_dir. When you put your own jinja2 filters, tests and globals in
your moban repo, you can let moban know about them via this keyword.

Importantly, you have to have __init__.py file in your plugin_dir. Otherwise,
your plugins will NOT be loaded.

Jinja2 Filter

from moban.extensions import JinjaFilter

@JinjaFilter()
def repr(string):
 if isinstance(string, list):
 return ["'{0}'".format(str(element)) for element in string]
 else:
 return "'{0}'".format(str(string))

Jinja2 Test

from os.path import isdir, isfile, isabs, exists
from os.path import lexists, islink, samefile, ismount

from moban.extensions import jinja_tests

jinja_tests(
 is_dir=isdir,
 directory=isdir,
 is_file=isfile,
 file=isfile,
 is_link=islink,
 link=islink,
 exists=exists,
 link_exists=lexists,
 # path testing
 is_abs=isabs,
 abs=isabs,
 is_same_file=samefile,
 same_file=samefile,
 is_mount=ismount,
 mount=ismount,
)

Jinja2 Globals

def test_globals():
 output = "globals.txt"
 test_dict = dict(hello="world")
 jinja_global("test", test_dict)
 path = os.path.join("tests", "fixtures", "globals")
 engine = Engine([path], path)
 engine.render_to_file("basic.template", "basic.yml", output)
 with open(output, "r") as output_file:
 content = output_file.read()
 eq_(content, "world\n\ntest")
 os.unlink(output)

It is possible to write an installable package including your own jinja2
filters, tests and globals. Please email me for more details.

Template engine extension for Moban

moban version 0.2 started using lml [http://lml.readthedocs.io] to employ loose couple plugins. Other
template engines, such as marko, haml can be plugged into moban seamless.

[image: _images/engine.png]
In order plugin other template engines, it is to write a lml plugin. The following
is an example starting point for any template engine.

from lml.plugin import PluginInfo

from moban.constants import TEMPLATE_ENGINE_EXTENSION

@PluginInfo(TEMPLATE_ENGINE_EXTENSION, tags=["mako"])
class MakoEngine:
 pass

After you will have finished the engine plugin, you can either place it in plugin_dir
in order to get it loaded, or make an installable python package. In the latter case,
please refer to yehua [http://yehua.readthedocs.io]: doing that in less than 5 minutes.

Index

Tutorial

This section covers the use cases for moban. Please check them out individually.

	Jinja2 command line

	Template inheritance

	Data override

	Single command

	Custom configuration

	Complex configuration

Level 8: Pass a folder full of templates

We already know that in moban file, you can pass
on a dictionary in targets section, and it apply the template. The assumption
was that the template parameter is a file. Now, what if the parameter is a
directory?

When you pass a directory with full of templates, moban will also assume the
target is a directory and will generate the output there. When saving the
files, it will remove its file suffices automatically.

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/engine.png
Tegister

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 moban - 模板 Yet another jinja2 cli command for static text generation

 		
 Level 1 Jinja2 on command line

 		
 Evaluation

 		
 Level 2: template inheritance

 		
 Evaluation

 		
 Level 3: data override

 		
 Evaluation

 		
 Level 4: single command

 		
 Evaluation

 		
 Level 5: custom configuration

 		
 Evaluation

 		
 Level 6: Complex Configuration

 		
 Evaluation

 		
 Level 7: Custom jinja filters, tests and globals

 		
 Evaluation

 		
 Misc 1: copying templates

 		
 Development guide

 		
 Jinja2 extensions for Moban

 		
 Jinja2 Filter

 		
 Jinja2 Test

 		
 Jinja2 Globals

 		
 Template engine extension for Moban

_static/up-pressed.png

_static/up.png

